If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-20x+25=10
We move all terms to the left:
5x^2-20x+25-(10)=0
We add all the numbers together, and all the variables
5x^2-20x+15=0
a = 5; b = -20; c = +15;
Δ = b2-4ac
Δ = -202-4·5·15
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-10}{2*5}=\frac{10}{10} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+10}{2*5}=\frac{30}{10} =3 $
| u/5-15=17 | | c+7=11 | | (x-10)(2x+2)+(x-10)(x+1)=0 | | 5a+3=8a-7 | | p/8=3 | | 4+26z=-29.8 | | 5x-5=6x-9 | | 3(x-1)=5(x+3)-5 | | 4r=4r+3 | | 5x-5=-6x-9 | | 30+3x=21 | | a-100=-16a | | a+34=80 | | 2x+7=8x-1 | | 5x-6=2x–3 | | 14u=8u+48 | | F(1)=2n+10 | | F(1)=2n+6 | | −4x−8=4x+8 | | 3p=-2p−10 | | 34-7x=4+2(x-3) | | 5-(2x)=13+x | | -6(9x+5)-3x+4x=-405+x | | x−3=x+3 | | 5-(2*x)=13 | | 4x+8-x=28 | | 8y+30=63 | | 8-2x=-12x | | 4x+5=23-2× | | 2t−5=(−10) | | 6(x-3)=5(2x+3)-15 | | (2x+59)+(x-19)+x=180 |